Glossar zum Thema

Suche nach Begriffen im Glossar (Reguläre Ausdrücke erlaubt)
Beginnt mit Enthält Genauer TrefferKlingt ähnlich wie ...
Alle A B C D E F G H I K L M N O P R S T U V W X Y Z
Begriff Definition
Wärmesenke
Wärmesenken sind Systemteile, in denen die Kühlmittel die aufgenommene Wärme bei einer tieferen Temperatur wieder abgeben können. Die letzte Wärmesenke in einem KKW ist entweder die Atmosphäre ( Kühlturm ) oder ein Wasserreservoir (Fluss). Es kommt häufig vor, dass der Durchfluss durch dieses Kühlsystem durch Verschmutzung, Eindringen von Fischen oder Muscheln, aber auch durch Niedrigwasser oder zu hohe Temperatur im Wasserreservoir beeinträchtigt ist. Von solchen Problemen werden vor allem Anlagen an den großen Seen in den USA geplagt. Höhere Reservoirtemperatur bedeutet weniger Wärmefluss und damit einen geringeren Wirkungsgrad der Anlage. Zur Herstellung der gleichen Strommenge muss dann mehr Brennstoff eingesetzt werden.
Wärmetauscher
Wasserstoff

Wasserstoff (H) ist das kleinste und leichteste Atom im Periodensystem der Elemente . Das gewöhnliche Wasserstoffatom besteht nur aus einem Proton , das den Kern bildet und einem Elektron das die Hülle bildet. Die schwereren Wasserstoffisotope haben spezielle Namen, es sind das Deuterium (D, 2H) mit einem und Tritium (T, 3H) mit zwei zusätzlichen Neutronen im Atomkern. Mischt man Wasserstoff mit Sauerstoff im Verhältnis 2 zu 1 so entsteht bei der folgenden Knallgasreaktion Wasser. Bei diesem Vorgang wird Enerige freigesetzt.
Wasserstoffblasen
Bei lokalen Temperaturerhöhungen (beispielsweise durch Leistungsanstieg) können trotz des hohen Umgebungsdruckes Wasserdampfblasen innerhalb eines Kernreaktors entstehen. Bei sehr hohen Temperaturen (zirka 1 200 Grad Celsius) kann sich Wasser in seine Bestandteile aufspalten. Dann entsteht brennbarer Wasserstoff , der in bestimmten Konzentrationen und unter Vermengung mit Sauerstoff explosionsgefährlich ist (Knallgas).
Wechselmaschine
Eine Wechselmaschine ist eine große kranartige Anlage für die Be- und Entladung von Brennstoff aus einem Kernreaktor . Je nach Reaktortyp kann die Wechseleinrichtung sehr unterschiedlich aussehen. Zumeist befindet sich die Maschine oberhalb vom Reaktor in der Reaktorhalle (Zentralsaal). Die meisten Reaktoren müssen zur Entladung von altem und der Zuladung von neuem Kernbrennstoff abgeschaltet und geöffnet werden. Die Wechselmaschine fährt dann über den Reaktorschacht und zieht die Brennelemente (die den Brennstoff enthalten) einzeln heraus. Sie bringt sie in das benachbarte Abklingbecken. Bei der Entnahme aus dem Reaktor sind die Brennelemente hochradioaktiv und dürfen nur unter Wasser gehandhabt werden. Aufgrund eigener Nachzerfallswärme würden sie sonst zerschmelzen. Anschließend wird der Reaktor mit neuem Brennstoff durch die Wechselmaschine beladen. Der Reaktordeckel wird wieder aufgesetzt und verschlossen. Manche Reaktoren (zumeist graphitmoderierte ) lassen auch während des Betriebes einen Brennstoffwechsel zu. Bei diesen befinden sich die Brennelemente in einzelnen Druckröhren oder Ähnlichem.
Wiederaufbereitung
Die Wiederaufbereitung ist die Trennung von Uran und Plutonium und anderen Spaltprodukten aus altem Kernbrennstoff . Auch nach den technisch sehr aufwändigen Schritten der chemischen und physikalischen Trennstufen bleiben Spuren von Spaltprodukten im extrahierten Brennstoffrest erhalten. Dieser zurück gewonnene Brennstoff wird erneut für die Produktion von Brennelementen für Kernreaktoren verwendet. Das Plutonium wird MOX -Elementen beigesetzt, für die Waffenproduktion separiert oder gelagert. Aufgrund der komplexen und langwierigen Aufarbeitungsschritte sind die notwendigen großtechnischen Anlagen teuer und nur zentral zu errichten. Das bedeutet wiederum ein umfangreiches Inventar an Radioaktivität . Die nicht gebaute Wiederaufbereitungsanlage (WAA) Wackersdorf in Bayern hätte in Lagern und Fertigungsstraßen den Brennstoff von bis zu 300 herkömmlichen Druckwasserreaktoren enthalten. Die meisten Schritte bei der Wiederaufbereitung finden daher auch abgeschirmt hinter meterdickem Bleiglas statt. Sie werden durch Roboter und mit Manipulatoren ausgeführt. Weite Teile der Anlagen können von Menschen niemals betreten werden und sind hermetisch abgeschottet. Einkommende Brennelemente werden zunächst in Brennstäbe aufgetrennt. Diese werden mechanisch zerkleinert und zersägt, um an die Brennstoffpellets zu gelangen. Die Pellets werden in siedender, konzentrierter Salpetersäure aufgelöst. Nach mehreren Extraktionsschritten liegen Uran, Plutonium und eine Reihe von unerwünschten Spaltprodukten wie Cäsium, Strontium, Kobalt und radioaktive Edelgase aus den Brennstäben mehr oder weniger getrennt vor. Auch im Normalbetrieb setzt eine Wiederaufbereitungsanlage ständig geringe Mengen radioaktives Material in die Umwelt frei (wie zum Beispiel gefilterte Abluft, gefiltertes Abwasser). Bei der Wiederaufbereitung fallen erhebliche Mengen von unbrauchbaren und nicht weiter verwendbaren radioaktiven und chemisch aggressiven Spaltprodukten, zumeist in vermengter Form, an. Der militärische Aspekt einer Wiederaufbereitung wird ebenso als deren Gegenargument verwendet, wie die schlechtere Brennstoffqualität und die ökologisch äußerst problematischen Verfahren.
Bis heute sind Wiederaufbereitungsanlagen durchlässige Punkte von ziviler zu militärischer Nutzung der Kernenergie. Wiederaufbereitungsanlagen stehen unter anderem in Großbritannien (Sellafield, Dounreay) und Frankreich (La Hague). Bemerkenswerterweise befinden diese sich am Meer mit starken ablandigen Strömungsverhältnissen.
Wirkungsgrad

Der Wirkungsgrad ist das Verhältnis zwischen aufgewendeter Energie und Energie in der gewünschten Endform. Der Wirkungsgrad einer Wärmekraftmaschine (wie zum Beispiel eines Verbrennungsmotors oder eben eines Kraftwerks) bezeichnet die Umwandlung der Primärenergie in mechanische Energie. In Einklang mit grundlegenden Theoremen der Physik (Hauptsätze der Thermodynamik) kann eine solche Maschine niemals mehr Energie freisetzen, als sie aufgenommen hat. Die Obergrenze ist durch den sogenannten Carnot'schen Wirkungsgrad gegeben. Je höher der Wirkungsgrad, desto besser ist die Energiebereitstellung.

WWER-1000
Der WWER-1000 ist ein in der Sowjetunion entwickelter Druckwasserreaktor (DWR). WWER-1000-Reaktoren werden mit höherer Leistungsdichte (1.000 Megawatt elektrisch (MWel)) als WWER-440 Reaktoren betrieben. Als Weiterentwicklung der WWER-Baureihe kann das vorliegende Containment , Containmentsprühsysteme und die Dimensionierung der Notkühlsysteme sowie die Anordnung der Turbinen angesehen werden. Durch die höhere Leistungsdichte ist die Druckbehälterwandung höheren Neutronenflüssen ausgesetzt. Die Beschleunigung der Wandversprödung und Materialalterung muss daher untersucht werden. Die Wahrscheinlichkeit für schwere radioaktive Freisetzungen in Anlagen des Typs WWER-1000 ist mit etwa einem Fall in 100.000 Reaktorbetriebsjahren mit dem Standard moderner westlicher Druckwasserreaktoren vergleichbar.
Innerhalb der EU werden in Tschechien und Bulgarien Anlagen dieses Typs betrieben. In Tschechien und Bulgarien, möglicherweise auch in der Slowakei sollen Neubauten von WWER-1000-Anlagen in den nächsten Jahren in Angriff genommen werden.
WWER-440/213
Die meisten Druckwasserreaktoren sowjetischer Bauart sind aus der Bauserie WWER-440. Eine wesentliche technische Weiterentwicklung des WWER-440/230 ist der WWER-440/213. Am Reaktorgebäude wurde ein Kondensationsturm eingeplant, der bei westlichen Reaktoren unbekannt ist. Im Falle eines Lecks im Primärkreis soll er den entstehenden Dampf in umfangreichen Wasservorhaltungen kondensieren. Dennoch gibt es auch bei den WWER-440/213 eine Reihe von Konstruktionsmängeln:
  • Ein Volldruck- Containment fehlt. Ein solches könnte bei einer Leckage im Primärsystem den Austritt von Radioaktivität zusätzlich verzögern. Der Feuerschutz ist unzureichend.
  • Die Kraftwerksturbinen sind oft so angeordnet, dass bei einem Zersplittern des Turbinenrotors Bruchstücke den nuklearen Teil beschädigen könnten. Bei einem konventionellen Kraftwerk in den Vereinigten Staaten flogen in der Vergangenheit zentnerschwere Turbinenschaufeln durch die Rotationsenergie kilometerweit durch die Luft.
  • Als Doppelblockanlagen verfügen zwei Reaktoren oft nur über ein gemeinsames Notsystem .
Bei welchen der derzeit betriebenen WWER-440/213-Reaktoren sich eine kontinuierliche Sicherheitsverbesserung lohnt und von technischer Seite möglich ist, muss untersucht werden. Dies hängt stark von der Entwicklung der Energiepreise und dem europäischen Energiemarkt ab. Mit der Einschränkung des fehlenden Volldruckcontainments und der Versprödungsgefahr der Reaktordruckbehälter ist die WWER-440/213-Serie in Bezug auf die Betriebssicherheit mit bestehenden westlichen Druckwasserreaktoren nur im Fall der Nachrüstung im Sicherheitsbereich vergleichbar. Innerhalb der EU werden in Tschechien und der Slowakei mehrere Anlagen dieses Typs betrieben oder fertig gebaut.
WWER-440/230
Die meisten Druckwasserreaktoren sowjetischer Bauart sind aus der Bauserie WWER-440. Der Reaktortyp 440/230 ist der älteste dieser Serie. Er weist vielfältige Konstruktions- und Sicherheitsmängel auf. Reaktoren des Typs WWER-440/230 zählen damit zu den Anlagen mit hohem Sicherheitsdefizit. Auch die Europäische Union stellte in der "Agenda 2000 - Eine stärkere und erweiterte Union" (15.7.1997) klar, dass Reaktoren des Typs WWER-440/230 "nicht auf das erforderliche Sicherheitsniveau gebracht werden können". Sie sind sozusagen "nicht-nachrüstbare" Reaktoren und sollen nach und nach stillgelegt werden. Innerhalb der EU geht in der Slowakei Ende 2008 der letzte Reaktor ( Bohunice V1 ) dieses Typs vom Netz.

TPL_WUA_ADDITIONAL_INFORMATION